Synthesis of spatial compliant mechanisms for morphing surfaces in three dimensions is challenging as it not only involves meeting the kinematic requirement for spatial shape change, but also providing support against external loads. In three dimensions, there are no existing insightful techniques for synthesis, and the computational approaches are rendered complex. This paper builds on a new insightful technique to synthesize compliant mechanism topologies by visualizing a kinetostatic field of forces that flow through the mechanism geometry. Such a framework when extended to three dimensions, enables a maximally decoupled synthesis framework of shape morphing compliant surfaces, where a primary mechanism meets the shape change requirement, and an auxiliary mechanism provides the required support under external loads. The preliminary design guidelines are implemented using an immersive Virtual Reality based design tool, and verified using finite element simulations for several spatial compliant mechanisms. This design framework is deemed useful for a larger class of shape morphing structures beyond the examples presented in the paper.

This content is only available via PDF.
You do not currently have access to this content.