This work is concerned with a new mechanism synthesis method for the simultaneous determination of the type, number and dimension of mechanisms by topology optimization. Earlier topology optimization methods can synthesize linkage mechanisms that consist only of links and joints. The proposed synthesis method is a gradient-based topology optimization method useful for the synthesis of planar mechanisms consisting of linkages and gears. To formulate the topology optimization based method, we propose two superposed design spaces as a ground structure: the linkage and gear design spaces. The gear design space is discretized by newly proposed gear blocks while the linkage design space by rigid blocks. The zero-length springs with variable stiffness are used to control the connectivity of blocks, which in turns determines the configuration of the synthesized mechanism. After the proposed topology-optimization-based synthesis formulation is presented, its effectiveness and validity are checked with various synthesis examples.

This content is only available via PDF.
You do not currently have access to this content.