This paper deals with the kinematic analysis and dimensional synthesis of a new 2R1T (R: rotation, T: translation) parallel kinematic machine (PKM). This is a 2PRU-UPR (P, R, U standing for prismatic, revolute and universal joint, respectively) PKM that is actuated by three actuated prismatic joints, two of which are mounted on the fixed base to reduce the movable mass. Firstly, the mobility and inverse kinematics of the 2PRU-UPR PKM are proposed. And then the motion/force transmissibility is evaluated by the local transmission index and good transmission workspace. Moreover, the singular configurations are obtained according to the motion/force transmissibility. Dimensional synthesis is carried out based on the GTW, and the optimized architectural parameters with good GTW are obtained. Finally, a prototype based on the optimized parameters has been developed, which has great potential in machining workpieces with curved surfaces.

This content is only available via PDF.
You do not currently have access to this content.