This study deals with the biodynamic responses of the 5-degree-of-freedom mathematical human model to whole-body vibrations in a vehicle. The nonlinear equations of motion of the human model were derived, and the spring constants and damping coefficients were extracted from the experimental data in the literature using optimization process. The natural frequencies and mode shapes were also calculated using linearized human model. In order to examine the effects of the variations of the human parameters, the parametric studies with respect to the stiffness values were performed. The mode veering phenomenon was observed between fourth and fifth mode of the linearized human model. In addition, the frequency responses of the nonlinear 5-degree-of-freedom model were also obtained, and the frequency shift and jump phenomena were observed. Furthermore, the estimation of the ride comfort was performed using CarSim and Matlab/Simulink with several road profiles according to ISO classification. Besides, we also calculated the ride comfort index using BS 6841 standard. In order to calculate the statistical responses of human model, the Monte-Carlo simulation applied to the nonlinear human model having uncertain stiffness assuming Gaussian distribution. These stochastic approaches enable the proposed human model to estimate probability distributions of the ride comfort index.

This content is only available via PDF.
You do not currently have access to this content.