By analyzing the key safety problems under the front-outside-tire burst steering condition, a vehicle stability control strategy is proposed in this paper, which is based on active front steering and differential braking systems. Taken both the handling stability and safety into account, we divided the whole control strategy into two layers, which are yaw moment control layer and the additional steering angle & tire force distribution layer. To solve the similar linear problem concisely, the LQR control is adopted in the yaw moment control layer. To achieve the goal of providing enough additional lateral force and yaw moment while keeping the burst tire in appropriate condition, the additional steering angle provided by active front steering system and the tire force distribution was adjusted step by step. To test the proposed control strategy performance, we modelling a basic front-outside-tire burst steering condition, in which the tire blows out once the vertical pressure reach the predefined critical value. Through simulation on different adhesion coefficient road, the control strategy proposed in this paper performance quite better compare with the uncontrolled one in aspect of movement, burst tire protection, handling stability.

This content is only available via PDF.
You do not currently have access to this content.