Accurately estimating road adhesion coefficient is very important for vehicle stability control system. In this paper, an innovation method to estimate the road adhesion coefficient is proposed. This method can be used in vehicles without additional sensors. And this method is especially suitable to be used in the intelligent vehicle equipped with steer-by-wire (SBW) system. When vehicle steers, releasing the steering wheel suddenly will result in rebound to a certain angle. When the steer wheel turns the same angle on different road whose adhesion coefficients are different, the front wheel rebound angles are different. The friction moment between the road and tire is the main factor to prevent the tire from turning back, and the coefficient of friction is equal to road adhesion coefficient when the vehicle is stationary. In this paper, the detailed dynamical models describing the whole process of the front wheel and tire rebound are established. Furthermore, the Luenberger reduced-order disturbance observer is established to estimate the friction moment, and then the adhesion coefficient is estimated. The SBW system which is usually equipped in intelligent vehicles can control the steer moment and steer angle accurately. When the steer wheel turns to certain angle, the SBW system is able to stop outputting torque quickly and timely, which is important for improving the experiment accuracy. In this paper, the SBW system is used to conduct an experiment on different roads. The experiment results demonstrate the validity of this method.

This content is only available via PDF.
You do not currently have access to this content.