Exploration of a design space is the first step in identifying sets of high-performing solutions to complex engineering problems. For this purpose, Bayesian network classifiers (BNCs) have been shown to be effective for mapping regions of interest in the design space, even when those regions of interest exhibit complex topologies. However, identifying sets of desirable solutions can be difficult with a BNC when attempting to map a space where high-performance designs are spread sparsely among a disproportionately large number of low-performance designs, resulting in an imbalanced classifier. In this paper, a method is presented that utilizes probabilities of class membership for known training points, combined with interpolation between those points, to generate synthetic high-performance points in a design space. By adding synthetic design points into the BNC training set, a designer can rebalance an imbalanced classifier and improve classification accuracy throughout the space. For demonstration, this approach is applied to an acoustics metamaterial design problem with a sparse design space characterized by a combination of discrete and continuous design variables.

This content is only available via PDF.
You do not currently have access to this content.