With growing interest in metal additive manufacturing, one area of interest for design for additive manufacturing is the ability to understand how part geometry combined with the manufacturing process will affect part performance. In addition, many researchers are pursuing design for additive manufacturing with the goal of generating designs for stiff and lightweight applications as opposed to tailored compliance. A compliant mechanism has unique advantages over traditional mechanisms but previously, complex 3D compliant mechanisms have been limited by manufacturability. Recent advances in additive manufacturing enable fabrication of more complex and 3D metal compliant mechanisms, an area of research that is relatively unexplored. In this paper, a design for additive manufacturing workflow is proposed that incorporates feedback to a designer on both the structural performance and manufacturability. Specifically, a cellular contact-aided compliant mechanism for energy absorption is used as a test problem. Insights gained from finite element simulations of the energy absorbed as well as the thermal history from an AM build simulation are used to further refine the design. Using the proposed workflow, several trends on the performance and manufacturability of the test problem are determined and used to redesign the compliant unit cell. When compared to a preliminary unit cell design, a redesigned unit cell showed decreased energy absorption capacity of only 7.8% while decreasing thermal distortion by 20%. The workflow presented provides a systematic approach to inform a designer about methods to redesign an AM part.

This content is only available via PDF.
You do not currently have access to this content.