Due to their volatile behavior, natural disasters are challenging problems as they often cannot be accurately predicted. An efficient method to gather updated information of the status of a disaster, such as the location of any trapped survivors, is extremely important to properly conduct rescue operations. To accomplish this, an algorithm is presented to control a swarm of UAVs (Unmanned Aerial Vehicles) and optimize the value of the information gathered. For this application, the UAVs are autonomously navigated with a decentralized control method. With sensor technology embedded, this swarm collects information from the environment as it operates. By using the swarm’s location history, areas of the environment that have gone the longest without exploration can be prioritized, ensuring a thorough search. Measures are also developed to prevent redundant or inefficient exploration, which would reduce the value of the gathered information. A case study of a flood scenario is examined and simulated. Through this approach, the value of the proposed swarm algorithm can be tested by tracking the number of survivors found as well as the rate at which they are discovered.

This content is only available via PDF.
You do not currently have access to this content.