This research presents a convergence analysis for an iterative framework for optimizing plant and controller parameters for active systems. The optimization strategy fuses expensive yet valuable experiments with less accurate yet cheaper simulations. The numerical model is improved at each iteration through a cumulative correction law, using an optimally designed set of experiments. The iterative framework reduces the feasible design space between iterations, ultimately yielding convergence to a small design space that contains the optimum. This paper presents the derivation of an asymptotic upper bound on the difference between the corrected numerical model and true system response. Furthermore, convergence of the numerical model to the true system response and convergence of the design space are demonstrated on an airborne wind energy (AWE) application.

This content is only available via PDF.
You do not currently have access to this content.