This study investigates the planetary gear housing vibration for rotorcraft systems with equally spaced and diametrically opposed planets using a finite element/contact mechanics model. This approach permits accurate housing deflection calculations at each time instant that result from the changing contact conditions on all gear teeth and elastic deformations of each gear. Planetary gears with diametrically opposed planets have larger amplitude vibrations and more frequency content than those with equally spaced planets. Parametric studies show that although the frequency content does not change with changes in the system’s parameters, the amplitudes of response at these frequencies are meaningfully impacted. The frequency components of the acceleration spectra can have additional content when the planetary gear has manufacturing and assembly errors. Each error case results in different frequency content in the acceleration spectra. Understanding these housing vibrations is beneficial for interpreting measured accelerometer signals to detect and classify damage.

This content is only available via PDF.
You do not currently have access to this content.