Existence of periodic solutions of fractional order dynamic systems is an important and difficult issue in fractional order systems field. In this paper, the non existence of completely periodic solutions and existence of partly periodic solutions of fractional order linear time varying periodic systems and fractional order nonlinear time varying periodic systems are discussed. A new property of Laplace transform of periodic function is derived. The non existences of completely periodic solutions of fractional order linear time varying periodic systems and fractional order nonlinear time varying periodic fractional order systems are presented by Laplace transform method and contradiction approach. The existence of partly periodic solutions of fractional order dynamic systems are proved by constructing numerical examples and considering Laplace transform property approaches. The examples and state figures are given to illustrate the effectiveness of conclusion presented.

This content is only available via PDF.
You do not currently have access to this content.