In this paper an electro-Acoustic Nonlinear Absorber (ANLA) is described. It is composed of a baffled nonlinear membrane with its front face coupled to an acoustic cavity and the other one enclosed. The enclosure includes a feedback loop composed of a microphone and a loudspeaker that control the acoustic pressure seen by the rear face of the membrane. Due to the nonlinear geometrical properties of the membrane, the ANLA can synchronize it resonance with one of the resonances of the cavity. It allows to bring out the energy transfer toward the ANLA and thus to reduce pressure in the cavity. The feedback loop tunes the resonance frequency of the ANLA at low level, wich is a key factor for the triggering threshold of the targeted energy transfer. An numerical study of the efficiency of the ANLA to reduce noise in a cavity is presented including the influence of the feedback loop parameters.

This content is only available via PDF.
You do not currently have access to this content.