A new locking-free formulation of a three-dimensional shear-deformable beam with large deformations and large rotations is developed. The position of the centroid line of the beam is integrated from its slope that is related to the rotation of a corresponding cross-section and stretch and shear strains. The rotation is parametrized by a rotation vector, which has a clear and intuitive physical meaning. Taylor polynomials are used for certain terms that have zero denominators to avoid singularity in numerical implementation. Governing equations of the beam are obtained using Lagrange’s equations for systems with constraints, and several benchmark problems are simulated to show the performance of the current formulation. Results show that the current formulation do not suffer from shear and Poisson locking problems that the absolute nodal coordinate formulation can have. Results from the current formulation for a planar static case are compared with its exact solutions, and they are in excellent agreement with each other, which verifies accuracy of the current formulation. Results from the current formulation are compared with those from commercial software ABAQUS and RecurDyn, and they are in good agreement with each other; the current formulation uses much fewer numbers of elements to yield converged results.

This content is only available via PDF.
You do not currently have access to this content.