Unbalance of rotating parts is the main source of excitation of lateral oscillations of rotors, of increase of time varying forces transmitted to the rotor stationary part, and of energy losses generated in the support elements. The technological solution, which makes it possible to reduce these undesirable effects, consists in adding damping devices to the rotor supports. A simple dynamical analysis shows that to achieve their optimum performance their damping effect must be adaptable to the current operating speed. This is enabled by magnetorheological squeeze film dampers, the damping effect of which is controlled by the change of magnetic flux passing through the lubricating layer. The developed mathematical model of the magnetorheological squeeze film damper is based on assumptions of the classical theory of lubrication and on representing the magnetorheological oil by a bilinear material. The results of the carried out computational simulations show that the appropriate control of the damping force makes it possible to minimize the energy losses in a wide range of operating speeds. The development of a new mathematical model of the magnetorheological squeeze film damper, the extension of computational procedures, in which this model has been implemented, the confirmation that the magnetorheological dampers make it possible to reduce energy losses in the rotor supports, and learning more on influence of controllable dampers on behavior of rotor systems are the principal contributions of the presented paper. The carried out research highlights the possibility of reducing the energy losses by means of employing magnetorheological squeeze film dampers, which represents a new field of their prospective application.
Skip Nav Destination
ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference
August 6–9, 2017
Cleveland, Ohio, USA
Conference Sponsors:
- Design Engineering Division
- Computers and Information in Engineering Division
ISBN:
978-0-7918-5822-6
PROCEEDINGS PAPER
Application of the Magnetorheological Squeeze Film Dampers for Reducing Energy Losses in Supports of Rotors of Rotating Machines Available to Purchase
Jaroslav Zapoměl,
Jaroslav Zapoměl
Institute of Thermomechanics, Prague, Czech Republic
Search for other works by this author on:
Petr Ferfecki
Petr Ferfecki
VŠB, Ostrava, Czech Republic
Search for other works by this author on:
Jaroslav Zapoměl
Institute of Thermomechanics, Prague, Czech Republic
Petr Ferfecki
VŠB, Ostrava, Czech Republic
Paper No:
DETC2017-67433, V008T12A032; 7 pages
Published Online:
November 3, 2017
Citation
Zapoměl, J, & Ferfecki, P. "Application of the Magnetorheological Squeeze Film Dampers for Reducing Energy Losses in Supports of Rotors of Rotating Machines." Proceedings of the ASME 2017 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. Volume 8: 29th Conference on Mechanical Vibration and Noise. Cleveland, Ohio, USA. August 6–9, 2017. V008T12A032. ASME. https://doi.org/10.1115/DETC2017-67433
Download citation file:
16
Views
Related Proceedings Papers
Related Articles
Study and Analysis of Anti Vibratory Passive and Active Methods Applied to Complex Mechanical System
J. Comput. Nonlinear Dynam (April,2012)
Transformer Eddy Current Dampers for the Vibration Control
J. Dyn. Sys., Meas., Control (May,2008)
Identification of Squeeze Film Damper Force Coefficients From Multiple-Frequency Noncircular Journal Motions
J. Eng. Gas Turbines Power (April,2010)
Related Chapters
Summary and Conclusions
Bearing Dynamic Coefficients in Rotordynamics: Computation Methods and Practical Applications
Smart Semi-Active Control of Floor-Isolated Structures
Intelligent Engineering Systems Through Artificial Neural Networks, Volume 17
Understanding the Problem
Design and Application of the Worm Gear