This paper studies bifurcation trees of periodic motions in a parametric, damped Duffing oscillator. From the semi-analytic method, the corresponding differential equation is discretized to obtain the implicit mapping. From implicit mapping structure, the periodic nodes of periodic motions are computed, and the bifurcation trees of period-1 to period-4 motions are presented and the corresponding stability and bifurcation are carried out by eigenvalue analysis. From the analytical predictions, numerical simulations are completed, and the trajectory, harmonic amplitudes and phases of period-1 to period-4 motions are illustrated.
This content is only available via PDF.
Copyright © 2017 by ASME
You do not currently have access to this content.