Topology optimization is an innovative strategy applied in the turbomachinery field with the aim of substantially improving the performances of turbomachinery components in terms of weights, stress levels and rotation speed, with a very remarkable economic impact. Being very flexible, topology optimization allows to manage the structures topology, significantly improving material distribution within a given design space for a given set of loads and boundary conditions. In this paper, the authors, in cooperation with General Electric Nuovo Pignone, develop a new concept design of a turbine disk and the optimized component is compared to the benchmark, in order to verify the achieved improvements. Special attention is paid to the use of innovative materials with lattice structures, characterized by complex three-dimensional geometries. Thanks to advanced technologies, as additive manufacturing, it is now possible to effectively exploit topology optimization to develop new components featured by complex structures. The developed prototypes will be manufactured and tested in the near future together with the industrial partners.

This content is only available via PDF.
You do not currently have access to this content.