Optimal fractional Luenberger observers for linear fractional-order systems are developed using the fractional Chebyshev collocation (FCC) method. It is shown that the design method has advantages over existing Luenberger design methods for fractional order systems. To accomplish this, the state transition operator for the solution of linear fractional-order systems is defined in a Banach space and discretized using the FCC method. In addition, the discretized state transition operator is obtained by using the FCC method. Next, the optimal observer gains are obtained by minimizing the spectral radius of the state transition operator for the observer,while ensuring that the observer responds faster than the controller. Finally, a numerical example is provided to demonstrate the validity and the efficiency of the proposed method.

This content is only available via PDF.
You do not currently have access to this content.