This paper presents the kinematics and dynamics of a spherical robot with a mechanical driving system that consists of four cable-actuated moving masses. Four cable-pulley systems control four tetrahedrally-located movable masses and the robot functions by shifting its center of mass to create rolling torque. The cable actuation decreases overall mass and, therefore, allow for less energy expenditure, as compared to other moving mass mechanisms that translate the masses by powered-screws. Additionally, the design allows the center of mass for the static (spherical shell, electronics, motors etc.) and dynamic mass (moving masses) to be at the geometric center at any given time, therefore has potential for tumbleweeding when needed. The derived equations of motion are verified by means of simulations.

This content is only available via PDF.
You do not currently have access to this content.