Short dental implants are commonly recommended to be implemented with small crown-to-implant (C/I) ratios due to their mechanical stability — decreasing C/I ratios cause less deformation in skeletal tissue under occlusal force. However, the long-term stability of short implants with high C/I ratios remains a controversial issue due to biomechanical complications. This study evaluates the strain distribution and functional implications in an implant-supported crown with various C/I ratios using a high-fidelity, nonlinear finite-element model. Several clinical scenarios are simulated by loading implants with various implant lengths (IL) and crown heights (CH). Strain distribution and maximum equivalent strain are analyzed to evaluate the effects and significance of CH, IL, and the C/I ratio. The study shows underloading for certain implant configurations with high C/I ratio. Increasing IL and decreasing C/I in moderation demonstrates a positive effect in long-term stability.

This content is only available via PDF.
You do not currently have access to this content.