The specific working conditions of piezoelectric harvesters for scooter tires are analyzed. Calculated and experimental results show that the excitation of the harvester can be considered a series of separated impulses. Harvester response to an ideal impulse is analyzed with a single-mode model. An optimal ratio between impulse duration and natural period of the harvester that maximizes harvester excitation is found. A numerical finite element (FE) model of a bimorph cantilever harvester is developed in COMSOL and validated by means of experimental tests. The validated FE model is used for showing that an actual harvester excited by road impulses generates a large voltage only if there is a specific relation between impulse duration and natural period of the harvester. Starting from the validated FE model, small harvesters suited to tires are developed and analyzed. Also these harvesters show the best performance for a specific range of impulse durations, which corresponds to the highest speeds of the speed range of the scooter (50–80 km/h) and to high levels of acceleration.

This content is only available via PDF.
You do not currently have access to this content.