A reliability-based topology optimization (RBTO) approach is presented using a new mean-value second-order saddlepoint approximation (MVSOSA) method to calculate the probability of failure. The topology optimizer is based on a discrete adjoint formulation. MVSOSA is based on a second-order Taylor expansion of the limit state function at the mean values of the random variables. The first and second-order sensitivity derivatives of the limit state cumulant generating function with respect to the random variables in MVSOSA, are computed using direct-differentiation of the structural equations. Third-order sensitivity derivatives, including the sensitivities of the saddlepoint, are computed using the adjoint approach. The accuracy of the proposed MVSOSA reliability method is demonstrated using a nonlinear mathematical example. The results are compared with the available mean value first-order saddlepoint approximation (MVFOSA) method and Monte Carlo simulation. Finally, the proposed RBTO-MVSOSA method for minimizing compliance-based probability of failure, is demonstrated using two 2D beam structures under random loading.

This content is only available via PDF.
You do not currently have access to this content.