This paper develops an experimental platform and performs a parametric study of an air-based battery thermal management system (BTMS) for electric vehicles. A flexible experimental platform with ten battery cells is built up to investigate how key BTMS design parameters affect the battery thermal performance. Three design parameters are studied in this paper, including the mass flow rate of cooling air, the heat flux from the battery cells to the cooling air, and the passage spacing size. To evaluate the thermal performance of the battery system, two metrics (i.e., the maximum temperature rise and the maximum temperature Uniformity) are used. A design of experiments (here 30 groups) are conducted to analyze how the three key design parameters affect the thermal performance of the BTMS. A computational fluid dynamics (CFD) of the BTMS is also performed to compare and help explain the experimental results. Both the experimental and CFD simulation results shows that: (i) decreasing the mass flow rate may deteriorate the thermal performance of the battery module; (ii) increasing the heat flux and enlarging the passage spacing size also deteriorate the battery thermal performance.

This content is only available via PDF.
You do not currently have access to this content.