Powder-based additive manufacturing technologies introduce severe variations in microstructure in terms of grain size and aspect ratio that, coupled with porosity, can result in dramatic effects on the functional (mechanical, thermal, fatigue, fracture etc.) performance of as-produced parts. In the context of Integrated Computational Materials Engineering (ICME), it is essential develop a computationally efficient approach for generating synthetic microstructural morphologies that reflect these process-induced features. In the present paper, we employ two methodologies for computing the evolution of metal solidification at the microstructural level as a function of process parameters associated with additive manufacturing. The first method is the Continuum Diffuse Interface Model (CDM) applied to an arbitrary material system, and the second, the Multi-Phase Field Model (MPFM) applied to pure nickel (Ni). We present examples of microstructures generated by these methods within the context of additive manufacturing.

This content is only available via PDF.
You do not currently have access to this content.