The thermohydrodynamic analysis of oil film bearing is essential for high speed oil film bearing. The temperature field is coupled with the pressure field. The numerical model can be built or chosen according to the complexity of the objects and requirement of the accuracy. In this paper, four pressure-thermal (P-T) models are proposed, which are zero-dimensional temperature field coupled with Reynolds equation (0D P-T model), two-dimensional temperature field coupled with Reynolds equation (2D P-T model), two-dimensional temperature with third dimensional correction coupled with Dawson equation (2sD P-T model), three-dimensional temperature field coupled with Dawson equation (3D P-T model). The non-Newtonian and temperature-viscosity effects of the lubrication oil are considered in all the four models. Two types of cylindrical journal bearing, the bearing with/without axial grooves, are applied for the simulation. All the simulated cases are compared with the solutions of the CFX. The results show that the 0D P-T model fails to predict the behavior of high speed bearing; The 2D and 2sD P-T model have an acceptable accuracy to predict the performance of the bearing without grooves, but are not able to simulate the P-T field of the bearing with grooves because of the under-developed thermal boundary layer; The 2sD P-T model shows a great improvement when calculating the pressure field compared with the 2D P-T model; the 3D P-T model coincides well with the CFX at any condition. The comparison of these four models provides a reference to help designer choose a proper numerical model for a certain project.

This content is only available via PDF.
You do not currently have access to this content.