Neurological disorders, a concussion, or aging can extend the time-delay in the human neuromuscular balance system; this time-delay increase has been shown [5] to be an important factor contributing to the loss of balance. However, commercial balance boards used to help improve individual’s balance deficiencies do not utilize time-delay as a tunable parameter. In order to systematically study stiffness and time-delay induced instabilities in standing posture, we developed an active balance board system with controllable torsional board stiffness, as well as an added controllable feedback time-delay of the torsional board. Using this dynamical system we confirmed the presence of two distinct mechanisms of instability: insufficient stiffness leading to tipping posture and excessive time-delays leading to limit cycle oscillations. We expect that this active balance board will allow for the early identification of an increased fall-risk, especially for subjects with extended time-delays and could help provide insights into how the human postural system adapts to various environments.

This content is only available via PDF.
You do not currently have access to this content.