In this paper, we present a tunable stiffness robot link for safe human-robot interaction. Stiffness of a manipulator determines the injury levels of a human from an impact between robots and operators, given a specific impact velocity. Compliance of a robot manipulator includes joint compliance and link compliance. Variable stiffness design from the viewpoint of actuators have been widely studied, while adjustable stiffness robotic link in the application of human robot interaction is rare in literatures. This paper details the design of a tunable stiffness robotic manipulator via four bar linkages which are actuated by servo motors. A 3D model of the morphing beam is constructed, and a robot which is made up of 3 morphing arms is designed. Prototypes using 3D printer are fabricated. Numerous tests have been done, and the results show that the stiffness is able to change 3.6 times given a morphing angle of π/4. Given an impact velocity of 2.2 m/s, the impact tests show that the acceleration has a 19.4% decrease comparing the curved beam and straight beam, and the head injury criteria (HIC) significantly decreases from 210.3 m5/2s−4 to 150.3 m5/2s−4, which is much safer to the operators. This paper explores the research of tunable stiffness on robotic links in the application of human robot interaction, expanding the research arena with regarding to human safe robot design.

This content is only available via PDF.
You do not currently have access to this content.