Balancing stiffness and weight is of substantial importance for antenna structure design. Conventional fold-rib antennas need sufficient weight to meet stiffness requirements. To address this issue, this paper proposes a new type of cable-rib tension deployable antenna that consists of six radial rib deployment mechanisms, numerous tensioned cables, and a mesh reflective surface. The primary innovation of this study is the application of numerous tensioned cables instead of metal materials to enhance the stiffness of the entire antenna while ensuring relatively less weight. Dynamic characteristics were analyzed to optimize the weight and stiffness of the antenna with the finite element model by subspace method. The first six orders of natural frequencies and corresponding vibration modes of the antenna structure are obtained. In addition, the effects of structural parameters on natural frequency are studied, and a method to improve the rigidity of the deployable antenna structure is proposed.

This content is only available via PDF.
You do not currently have access to this content.