One of the challenges often encountered in compliant mechanism design is managing material selection given the need to meet multiple constraints. Many methods have been offered previously to systematically facilitate that decision process. However, these methods struggle to incorporate a systematic method for material selection in multi-functional compliant mechanisms. This work seeks to address this gap by generically implementing a new Ashby-based material selection and design method for compliant mechanisms with multi constraint design criteria. To help demonstrate the method, the design of an electrically conductive lamina emergent torsion (LET) joint used for a back-packable solar array is explored. The methodology described here can be used to create other compliant mechanism performance metrics to address the design of specific compliant mechanisms.

This content is only available via PDF.
You do not currently have access to this content.