In present paper, resonant characteristics of vibrating micro/nano-beams are investigated based on the nonlocal elasticity theory. The natural frequency and quality factor of the micro/nano-beams are known as important resonant characteristics which play crucial roles in resonant vibration of the beams in air environments. To determine the resonant characterizes of the micro/nano-beams, the governing vibration equation of the nonlocal beam with fixed end supports is derived considering the air damping force. As the beam is modeled the beam as a string of vibrating adjacent spheres in interaction with the ambient air environment, the air damping force is obtained as a function of the resonant frequency. Furthermore, to calculate the quality factor of the size-dependent micro/nano-beams, the time-dependent vibration equation is presented in modal space based on the orthogonality conditions. Therefore, the quality factor obtained as a function of the natural frequencies and size-dependent nonlocal parameter at various resonant modes of vibration. Then, a parametric study investigates the nonlocal effects on the quality factor of the resonant micro/nano-beam. The obtained results indicate that the nonlocal size effects decreases the quality factor. In addition, the size effects play more prominent role at the higher resonant modes of vibration.

This content is only available via PDF.
You do not currently have access to this content.