Intrathecal (IT) drug delivery is a preferred treatment for chronic pain, brain cancers and spasticity. However, the application of IT drug delivery treatment is still limited by the large patient-to-patient variations and numerous kinds of rare genetic diseases. A fast, relatively cheap and subject-specific in-vitro method to study the drug bio-dispersion mechanism and optimize the intrathecal drug therapies for individual patients is in great need. In this study, we will investigate the model design and additive manufacturing process for producing a subject-specific spine model, which will simulate the interaction of the real human spine with cerebrospinal fluid (CSF). Research issues including watertight 3D printable model construction and 3D printing of anatomical accurate, physiological functional spine models are discussed in this paper. A pipeline of additive manufacturing in-vitro subject-specific models for study of cerebrospinal fluid and drug transport in spine is presented.

This content is only available via PDF.
You do not currently have access to this content.