In reliability-based design optimization (RBDO), an optimal design which minimizes an objective function while satisfying a number of probabilistic constraints is found. As opposed to deterministic optimization, statistical uncertainties in design variables and design parameters have to be taken into account in the design process in order to achieve a reliable design. In the most widely used RBDO approaches, the First-Order Reliability Method (FORM) is used in the probability assessment. This involves locating the Most Probable Point (MPP) of failure, or the inverse MPP, either exactly or approximately. If exact methods are used, an optimization problem has to be solved, typically resulting in computationally expensive double loop or decoupled loop RBDO methods. On the other hand, locating the MPP approximately typically results in highly efficient single loop RBDO methods since the optimization problem is not necessary in the probability assessment. However, since all these methods are based on FORM, which in turn is based on a linearization of the deterministic constraints at the MPP, they may suffer inaccuracies associated with neglecting the nonlinearity of deterministic constraints. In a previous paper presented by the authors, the Response Surface Single Loop (RSSL) Reliability-based design optimization method was proposed. The RSSL-method takes into account the non-linearity of the deterministic constraints in the computation of the probability of failure and was therefore shown to have higher accuracy than existing RBDO methods. The RSSL-method was also shown to have high efficiency since it bypasses the concept of an MPP. In RSSL, the deterministic solution is first found by neglecting uncertainties in design variables and parameters. Thereafter quadratic response surface models are fitted to the deterministic constraints around the deterministic solution using a single set of design of experiments. The RBDO problem is thereafter solved in a single loop using a closed-form second order reliability method (SORM) which takes into account all elements of the Hessian of the quadratic constraints. In this paper, the RSSL method is used to solve the more challenging system RBDO problems where all constraints are replaced by one constraint on the system probability of failure. The probabilities of failure for the constraints are assumed independent of each other. In general, system reliability problems may be more challenging to solve since replacing all constraints by one constraint may strongly increase the non-linearity in the optimization problem. The extensively studied reliability-based design for vehicle crash-worthiness, where the provided deterministic constraints are general quadratic models describing the system in the whole region of interest, is used to demonstrate the capabilities of the RSSL method for problems with system reliability constraints.

This content is only available via PDF.
You do not currently have access to this content.