Adaptive sampling methods have been used to build accurate meta-models across large design spaces from which engineers can explore data trends, investigate optimal designs, study the sensitivity of objectives on the modeling design features, etc. For global design optimization applications, adaptive sampling methods need to be extended to sample more efficiently near the optimal domains of the design space (i.e., the Pareto front/frontier in multi-objective optimization). Expected Improvement (EI) methods have been shown to be efficient to solve design optimization problems using meta-models by incorporating prediction uncertainty.

In this paper, a set of state-of-the-art methods (hypervolume EI method and centroid EI method) are presented and implemented for selecting sampling points for multi-objective optimizations. The classical hypervolume EI method uses hyperrectangles to represent the Pareto front, which shows undesirable behavior at the tails of the Pareto front. This issue is addressed utilizing the concepts from physical programming to shape the Pareto front. The modified hypervolume EI method can be extended to increase local Pareto front accuracy in any area identified by an engineer, and this method can be applied to Pareto frontiers of any shape. A novel hypervolume EI method is also developed that does not rely on the assumption of hyperrectangles, but instead assumes the Pareto frontier can be represented by a convex hull. The method exploits fast methods for convex hull construction and numerical integration, and results in a Pareto front shape that is desired in many practical applications.

Various performance metrics are defined in order to quantitatively compare and discuss all methods applied to a particular 2D optimization problem from the literature. The modified hypervolume EI methods lead to dramatic resource savings while improving the predictive capabilities near the optimal objective values.

This content is only available via PDF.
You do not currently have access to this content.