A fail-safe network is one that mitigates the impact of different uncertainty sources and provides the most profitable level of service. This is achieved by having 1) a structurally fail-safe topology against rare but high magnitude stochastic events called disruptions and 2) an operationally fail-safe flow dynamic against frequent but low magnitude stochastic events called variations. A structurally fail-safe network should be robust and resilient against disruptions. Robustness and resilience respectively determine how well and how quickly disruptions are handled by the SN. Flow planning must be reliable in an operationally fail-safe supply network against variations to provide the most profitable service level to customers. We formulate the problem of designing/redesigning fail-safe supply networks as a compromise Decision Support Problem. We analyze the correlations among robustness, resilience, and profit for supply networks and propose a method for supply network managers to use when they need to find a compromise among robustness, resilience, and profit.

This content is only available via PDF.
You do not currently have access to this content.