Topology optimization is finding renewed interest thanks to additive manufacturing — a technology that is well-suited to fabricate the complex organic shapes and structures that often arise from topology optimization. This paper reviews the current state of topology optimization software through the redesign of a real aerospace mounting plate, focusing on manufacturing considerations that are important for additive manufacturing (AM). Twenty different commercial and educational software tools are investigated and categorized based on their capabilities. Two representative software tools are then demonstrated with well-known examples to compare user interfaces and outputs, and one is chosen to perform the mounting plate case study. We find that all of the commercially available topology optimization software packages offer similar capabilities and considerably more functionality than educational software, but only a few niche products can be tailored to specific applications and manufacturing processes. Current commercial software does not provide adequate manufacturing constraints to remove the need for manual interpretation of results for additive manufacture. A case study involving optimization of an industry-relevant component for AM is used to provide in-depth understanding of both topology optimization and manufacturing considerations in AM. Shortcomings in the existing software tools are presented, and future requirements to take advantage of the increasing AM capabilities, particularly in metals, are discussed.

This content is only available via PDF.
You do not currently have access to this content.