Large scale scene generation is a computationally intensive operation, and added complexities arise when dynamic content generation is required. We propose a system capable of generating virtual content from non-expert input. The proposed system uses a 3-dimensional variational autoencoder to interactively generate new virtual objects by interpolating between extant objects in a learned low-dimensional space, as well as by randomly sampling in that space. We present an interface that allows a user to intuitively explore the latent manifold, taking advantage of the network’s ability to perform algebra in the latent space to help infer context and generalize to previously unseen inputs.
Volume Subject Area:
36th Computers and Information in Engineering Conference
This content is only available via PDF.
Copyright © 2016 by ASME
You do not currently have access to this content.