3D equipment interaction module in human motion simulation is developed in this paper. A predictive dynamics method is used to simulate human motion, and a helmet is modeled as the equipment that is attached to the human body. We then implement this method using the predictive dynamics task of walking. A mass-spring-damper system is attached at the top of the head as a helmet model. The equations of motion for the helmet are also derived in a recursive Lagrangian formulation within the same inertial reference frame as the human model’s. The total number of degrees of freedom for the human model is 55 — 6 degrees of freedom for global translation and rotation, and 49 degrees of freedom for the body. The helmet has 7 degrees of freedom, but 6 of them are dependent to the human model. The movement of the helmet is analyzed due to the human motion. Then, the reaction force between the human body and the equipment is calculated. Once the reaction force is obtained, it is applied to the human body as an external force in the predictive dynamics optimization process. Results include the motion of equipment, the force acting on body at the attachment point, the joint torque profiles, and the ground reaction force profiles at the foot contacting point.

This content is only available via PDF.
You do not currently have access to this content.