Hybrid stereolithograpgy (SLA) process synthesizes the laser scanning based SLA system and mask projection based SLA system. It adopts laser as the energy source for scanning the border of a 2D pattern, whereas a mask image is used to solidify the interior area. By integrating the merits of the two subsystems, the hybrid SLA process can achieve relatively high surface quality without sacrificing the productivity. For the hybrid system, closed polygon contours are required to direct laser scanning, and a binary image is also needed for mask projection. We proposed a novel image based slicing method. This method can convert the 3D model into a series of binary images directly, and each image is corresponding to the cross-session of the model at a specific height. Based on the resultant binary image, we use image processing method to gradually shrink the image. The contours of shrunk image are traced and then restored as polygons to direct the laser spot movement. The final shrunk image will serve as the input for mask projection. The experimental result of several test cases demonstrate that proposed method is substantially more time-efficient than traditional approaches.

This content is only available via PDF.
You do not currently have access to this content.