In order to predict the effects of energy and material deposition via laser and powder-jet based additive manufacturing methods, it is necessary to model a number of appropriate key process phenomena. In addition to solving the classical transient heat equation subject to a moving heat source, it is also critical that local, transient changes in domain geometry and properties also be addressed in order to approach as-build geometry and its associated functional behavior. Furthermore, the melting/solidification behavior of the deposited material may also need to be addressed due to its implications to local temperature-time histories. Finally, incorporating process parameters into a comprehensive simulation is also essential in providing accurate, high fidelity predictions. This work presents efforts at incorporating all of the above-mentioned phenomena via a finite element-based simulation framework to lay the groundwork for full-scale, fully coupled simulations of entire parts. A comparison of predictions including and omitting phase transformation effects along with mass conservation is also presented in the context of assessing the accuracy gained versus the requisite computational expense.

This content is only available via PDF.
You do not currently have access to this content.