The lubrication performances of cycloid drives affect the dynamic characteristics, the mechanical efficiency and the contact fatigue behavior of the system. To maintain tranmission precision it is required to minimum the times of disassebly, hence grease lubrication is often applied where starvation might occur in service. Starved lubrication performance of a cycloid gear drive is studied using a numerical finte line starved-elastohydrodynamic lubrication model. The parameter of the inlet oil film thickness is chosen to represent the starved status. Effects of the inlet film thickness on the centralfilm thickness, the friction coefficient and the frictional power loss are investigated. In addition, effects of different shape of inlet oil-supply layer in the same starved degree on lubrication performance are studied. Under the same inlet oil supply volume, the convex type profile would present a better oil film within the nominal contact zone compared with other four different shapes of the inlet film supply.

This content is only available via PDF.
You do not currently have access to this content.