Journal bearings have been widely used in high-speed rotating machinery. The dynamic coefficients of oil-film force affect the machine unbalance response and machine stability. The oil-film force of hydrodynamic bearing is often characterized by a set of linear stiffness and damping coefficients. However the linear oil-film coefficients with respect to an equilibrium position of the journal are inaccurate when the bearing system vibrates with large amplitudes due to a dynamic load. The study on nonlinear oil-film forces is still rare and most papers are confined to theoretical analyses. The purpose of this paper is to derive some new non-linear force models (28-co., 24-co. and 36-co. models) to identify these dynamic coefficients based on experimental data. The fundamental test model is obtained from a Taylor series expansion of bearing reaction force. Tests were performed with a nominal diameter of 100mm and a length–to–diameter ratio of 0.7 using a suitable test rig in which it is possible to apply the static load in any direction. The results show that these three models are feasible to identify the oil-film forces in which the second-order oil-film coefficients received from the 24-co. model are more stable compared to those of other two nonlinear models.

This content is only available via PDF.
You do not currently have access to this content.