Enhanced nonlinear energy sink (NES) is addressed here by employing a non-traditional kind of a nonlinear restoring force. The usual nonlinear coupling element between the NES and the linear oscillator (LO) in the literature generates essentially nonlinear restoring force between the NES and the LO. Unlike Type I NES, here the nonlinear coupling force has varying components during the oscillation which appear in closed loops under the effect of damping terms. This NES attachment with the LO rapidly absorbs and immediately dissipates significant portion of the initial energy induced into the LO through a strong resonance capture between the NES and LO responses. The proposed design could also be promising for energy harvesting purposes. The obtained results by numerical simulation show that employing this type of nonlinear restoring force for passive targeted energy transfer (TET) is more promising than some other types of NESs in which purely cubic stiffness restoring forces have been incorporated.

This content is only available via PDF.
You do not currently have access to this content.