Regenerative machine tool chatter is investigated in a nonlinear single-degree-of-freedom model of turning processes. The nonlinearity arises from the dependence of the cutting-force magnitude on the chip thickness. The cutting-force is modeled as the resultant of a force system distributed along the rake face of the tool. It introduces a distributed delay in the governing equations of the system in addition to the well-known regenerative delay, which is often referred to as the short regenerative effect. The corresponding stability lobe diagrams are depicted, and it is shown that a subcritical Hopf bifurcation occurs along the stability limits in the case of realistic cutting-force distributions. Due to the subcriticality a so-called unsafe zone exists near the stability limits, where the linearly stable cutting process becomes unstable to large perturbations. Based on center-manifold reduction and normal form calculations analytic formulas are obtained to estimate the size of the unsafe zone.

This content is only available via PDF.
You do not currently have access to this content.