This paper investigates the spin resonance of a rattleback subjected to base oscillations. The phenomenon of Spin resonance can transduce vibrations to rotations. The rattleback is an ellipsoidal top with a preferred direction of spin. If rotated anti to it, longitudinal vibrations are set up and spin direction is reversed.

Simulations and results are presented which show that the rattleback has a mono-peak spin resonance with respect to base vibrations. Two frequencies that appear in the response are identified — the Coupled and Uncoupled frequencies. Spin resonance, it is deduced, occurs when the base frequency is twice the coupled frequency of the rattleback. A linearized model is developed and a closed form expression for the Resonant frequency in terms of the inertia parameters of the rattleback is derived.

Novel ideas for applications in Energy harvesting and Vibration sensing that utilize the phenomenon of spin resonance are also included.

This content is only available via PDF.
You do not currently have access to this content.