The objective of this investigation is to present a new flexible multibody system (MBS) approach for modeling textile roll-drafting sets used in chemical textile industry. The proposed approach can be used in the analysis of textile materials which have un-common material properties best described by specialized continuum mechanics constitutive models, for instance, the lubricated polyester filament bundles (PFB) presented in this paper. In this investigation, PFB is modeled as a hyper-elastic transversely isotropic material using absolute nodal coordinate formulation (ANCF). The PFB strain energy density function is decomposed into a fully isotropic component and an orthotropic, transversely isotropic component expressed in terms of five invariants of the right Cauchy-Green deformation tensor. Using this energy decomposition, the second Piola-Kirchhoff stress and the elasticity tensors can also be split into isotropic and transversely isotropic parts. Constitutive equations are used to evaluate the generalized material forces associated with the coordinates of three-dimensional fully-parameterized ANCF finite elements. The proposed model allows for modeling the dynamic interaction between the rollers and PFB and allows for using spline functions to specify the PFB forward velocity. The paper demonstrates that the textile material constitutive equations and the MBS algorithms can be used effectively to obtain numerical solutions that define the state of strain of the textile material and the relative slip between rollers and PFB and therefore provide a good method to study the roll-drafting process in the chemical textile industry.

This content is only available via PDF.
You do not currently have access to this content.