This paper presents a general method to construct a singularity trace for single degree-of-freedom, closed-loop linkages that include prismatic, in addition to, revolute joints. The singularity trace has been introduced in the literature as a plot that reveals the gross motion characteristics of a linkage relative to a designated input joint and design parameter. Previously, singularity traces were restricted to mechanisms composed of only rigid bodies and revolute joints. The motion characteristics identified on the plot include changes in the number of solutions to the forward kinematic position analysis (geometric inversions), singularities, and changes in the number of branches. To illustrate the adaptation of the general method to include prismatic joints, basic slider-crank and inverted slider-crank linkages are explored. Singularity traces are then constructed for more complex Assur IV/3 linkages containing multiple prismatic joints. These Assur linkages are of interest as they form an architecture that is commonly used for mechanisms capable of approximating a shape change defined by a general set of closed curves.

This content is only available via PDF.
You do not currently have access to this content.