In this paper, we introduce the strategy of designing and analyzing compliant nanomechanisms fabricated with DNA origami which we call compliant DNA origami mechanism (CDOM). The rigid, compliant and flexible parts are constructed by a bunch of double-stranded DNA (dsDNA) helices, fewer dsDNA helices and single-stranded DNA (ssDNA) strands respectively. Just like in macroscopic compliant mechanisms, a CDOM generates its motion via deformation of at least one structural member. During the motion, strain energy is stored and released in the mechanism. These CDOM can suppress thermal fluctuations due to the internal mechanical energy barrier for motion. An example of compliant hinge joint and a bistable four-bar CDOM fabricated with DNA origami are discussed at the end of this paper. The classic pseudo-rigid-body (PRB) model for compliant mechanism is successfully employed to the analysis of these DNA origami nanomechanisms. This PRB model has been used to guide the design of a bistable CDOM for a desired energy landscape.

This content is only available via PDF.
You do not currently have access to this content.