DNA origami nanotechnology is a recently developed self-assembly process for design and fabrication of complex 3D nanostructures using DNA as functional materials. This paper aims to review our recent progress in applying DNA origami to design of kinematic mechanisms of nanometer scale. These nanomechanisms, which we call DNA Origami Mechanisms (DOM), are made of relatively stiff bundles of double-stranded DNA (dsDNA) which function as rigid links, connected by highly compliant single-stranded DNA (ssDNA) strands which function as kinematic joints. The designs of kinematic joints such as revolute, prismatic, cylindrical, universal and spherical are presented. The steps as well as necessary software or experimental tools for designing DOM with DNA origami links and joints are detailed. To demonstrate the designs, we presented the designs of Bennett 4-bar and crank-slider linkages. At last, a list of technical challenges such as design automation, computational modeling are presented. These challenges could also be opportunities for mechanism and robotics community to apply the well developed kinematic theories and computational tools to design of nanorobots and nanomachines.

This content is only available via PDF.
You do not currently have access to this content.