This paper provides a systematic approach to design a vehicle’s independent suspension system. In this approach, multi-link type suspension is selected. By treating it as a parallel mechanism, both the kinematic design and force analysis are conducted in the same framework of screw theory. Regarding the kinematic design, constraint-based approach is used to find suitable layouts of constraint limbs in accordance with desired degree of freedom. In the force analysis, stiffness matrix of the suspension mechanism is developed, leading to the deformation and stress analysis under various critical loads. The developed formulae are further utilized to design suitable suspension mechanism, followed by finite-element-simulation validation as well as optimization design to reduce the resulted maximum stresses.

This content is only available via PDF.
You do not currently have access to this content.