Contact Aided Compliant Mechanisms (CCMs) are synthesized via the Material Mask Overlay Strategy (MMOS) to trace a desired non-smooth path. MMOS employs hexagonal cells to discretize the design region and engages negative circular masks to designate material states. To synthesize CCMs, the modified MMOS presented herein involves systematic mutation of five mask parameters through a hill climber search to evolve not only the continuum topology (slave surfaces), but also, to introduce the desired rigid, interacting surfaces within some masks. Various geometric singularities are subdued via hexagonal cells though numerous V-notches get retained at the continuum boundaries. To facilitate contact analysis, boundary smoothing is performed by shifting boundary nodes of the evolving continuum systematically. Numerous hexagonal cells get morphed into concave sub-regions as a consequence. Large deformation finite element formulation with Mean Value Coordinates (MVC) based shape functions is used to cater to the generic hexagonal shapes. Contact analysis is accomplished via the Newton-Raphson iterations with load increment in conjunction with the penalty method and active set constraints. An objective function based on Fourier Shape Descriptors is minimized subject to suitable design constraints. An example of a path generating CCM is included to establish the efficacy of the proposed synthesis method.

This content is only available via PDF.
You do not currently have access to this content.